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Like Carlitz [1-3], Singh [5], K. N. Srivastava [7] and others, we introduce
the associated generalized Hermite polynomials by means of

ke 1

kgo CEAY A9(x, r, p) G (x, 1, p) = 0,n > 1, (L1
and
AP (x,r,p) =1, (1.2)
where
GEx, 7, p) = (=1 x~*exp(px)) D" exp(—px)}  (13)

defines the generalized Hermite polynomials of Gould and Hopper [4].}
It follows, as a consequence of our definition that

o . n 1 . o
1= ;::ot 2_:0 =R AL(x, 1, p) GEP(x, 1, p)

= Y t*A(x, r, p) Z G“""“’(x 1, p).
k=0

Therefore, in view of the fomula [4],

x~(x — ) exp[p{x" — (x — 1)} = Z G“"’(x, r,p), (1.4

—0

1 Although for reasons of convenience the notation used here is slightly in variance
with that of Gould and Hopper, the polynomials are essentially the same.
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we readily obtain

e

(1+ é) exp [ 3—xr + _xz—g] — Y 249, r,p),  (L5)

(x =+ 2) k=0

where t(x + z) = xz.
On rewriting Eq. (1.5) in the form

3 ARG # = exp(—px) 3 5 (i P

n=0 m=0

and equating the coefficients of z”, we derive the explicit formula

pmxmr—n

A;f‘)(x, r,p) eXP( px) z ( l)n (mrm O‘)n

n! m—0

Since
(—1)”(’71}' - O‘)H = (O‘ —n+1— mr)na

the above equation simplifies to

AP (x, r,p) =

n! m!

m==0

and this can also be put in the elegant form

AP, 1, p) =

n! N Conte') N m!

Next, from (1.4), we notice that

G(;)(x, r, P) = eXp(px’) z -i-j—'—r) (_p)m x’mr—n,

— m!
so that on suitably adjusting the parameters in (1.7) we get

A‘,f"(x, r, P) = (l/n !) G;n-u—l)(x’ r, —‘p)9

exp(—px") 2 («—n+1—mr), prxmr=n,

(« — n + 1), exp(—px") Z (" — Oy pmx™T _

pnznxmr—n

(1.6)

(1.7)

(1.8)

(1.9)

(1.10)

and hence, in a straightforward manner, from (1.2) we deduce the Rodrigues

formula,

AP(x, 1, p) = (—1)"/n!) exp(—px") x*—+H1D%{x"~="1 exp(px")},

for the associated generalized Hermite polynomials.

(1.11)
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11.

Consider the product

(i 2" A (x, r, p))(i Z*AB(y, r, p))

n=0 k=0
= (1 + z/x)* (1 + z/y)P exp{—x"—y" + (x¥[(x + 2)") + (Y*/(y + 2)")},
so that when x = y,

@

Y zmAlB(x, 1, 2p)

o
= 0‘2 i’ A (x, 1, p) AP(x, 1, p), @2.1)
o
and, therefore,
A1, 2) = Y. AP(x,r,p) A3, 7, ), 2.2)

k=0

which admits a generalization in the form
n
AP, r,p 4 q) = Y, AP(x, 1, p) AP (%, 1, 9), (2.3)
k=0

thereby providing an inverse for (3.10) of [4].
Next, since

x~(x — )*exp{p{—x" — (x — 1)"}]

= ¥ () 40 rp) (1 — L) expl2ptor — (2 — oy

k=0

by an appeal to (1.4), it follows that

@«

S LGk rp) = ¥ AP 1 p) Y L GBIy, 7, 2p), (2.4)

o 11! k=0 nmo 11!
and finally,
n

GPenp) = ¥ o i T APC . p) G 2, (25)
k=0
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or equivalently

Gk 1, p) = Y, (1) GE520x, r, —p) Gtg™™(x, 1, 2p).  (2.6)

k=0
It is not difficult to verify that Eq. (2.6), on generalization, yields the formula

6%, 1, p) = Y. (1) G005, r, —g) Getg=(x, 1, p + @), (27)

k=0

for the generalized Hermite polynomials. Now, consider the sum
> 5 (11 ) A et = 3 G+ o A D)
e N x2r
= X (X+Z+U) exp[pg—x +m}]

= x"%x 4+ z)*exp [p ;—x’ + Ea J_irz), %]

[1 + X+ z] exp [p (x)—C:rz)’ g(x(jc—jlz‘frv)’ - li]

= x~*(x -+ z)* exp [p g—x' + T);)_C:—TZ);H
€ A xiz””’%'

% i g(x+2)2

Thus on equating the coefficients of v*, we shall obtain

5 (3 as
= (1 + z/xy2* exp[ p{—x" + (*[(x + 2))}] ALH(/(x + 2)), r, P}
2.8)

or, alternatively, the identity

Z (n + k) A(a)k(x, v, p) z"

n=0

= 3 g0 p) A [ . 29

n=0
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IT1.

As usual, let & stand for the differential operator x(d/dx), satisfying the
well known properties:

F(8){x"} = F(n) x", (3.1)
F(d)[exp{ g(x)}f (x)] = exp{g(x)} F{5 + xg'(x)} f(x), (3.2

and
8B 4 1) - (8 + n — 1) f(x) = [x* 8]"f(x). (3.3)

Employing the formula (1.8), we have

@+ prxt +nm)@ + prx +n — o —r), AP(x, r, p)

_rla—n4 D exp(—px7) < mmr — o —1r), (B — Dmyr 0y 0
= n! ch m) (—amy 0

_ prx"(a — n + 1), exp(—px7) i (n — oy prxmr—n
n! o MI(—)my

= prx"(8 + prx" + 2n — o), A9(x, r, p).
Thus, we have the differential equation,

[+ prx"+m)@ +prx"+n—oa—r),

G4
—prx™( + prx™ + 2n — a),]y = 0,

satisfied by A%(x, r, p).

It will not be out of place to remark that on replacing o« by n — a — 1,
p by —p and multiplying throughout by n!, the formula (3.4) would reduce to
our earlier result ((3.4) in [6]), for the generalized Hermite polynomials.

Iv.

In view of (3.1)-(3.3) and since the operators commute, it can be deduced
fairly easily that

Dr[x*==~1 exp(px7) y]

= x~exp(px’) [] G+ prx" —a— 1 +)) », 4.1
j=1

where y is a sufficiently differentiable function of x.
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On the other hand, using the Leibnitz theorem and the formula (1.11), we
also have

D"[x"==1 exp(px") y]

— (_I)n n| xrz—a—l exp(pxr) Z ( )

ASI(x, r, p) D¥y.  (4.2)

Therefore, comparison of (4.1) and (4.2) leads to

[T@+prx" —a—1+j)y = nl(—x)" Z ( ) A-P(x, r, p) DY,
j=1 %=0
’ (4.3)
so that when y = 1, we have
TG+ prxr —a— 14 j) = (—x)"n! A(x, r, p). 4.49)
j=1

Again, on rewriting (4.1) in the form

jﬁl(ﬁ +prxt —a—1+j)y
= x it exp(—pxN)[x(xD + DI* {x=" exp(px7) y}, (4.5
from (4.3), we readily obtain the formula
[x(xD + D" {x~"* exp(px") y}

= (=Drn! - xexp(px") Z

=0

)

Al (x, r, p) D¥y. (4.6)
If now we express

x>~ exp(—px") D*[x"—1 exp( px") y],
in the form

xa—2n+l exp(—pr) 5(8 — 1) (3 —n+ l)[xn—kxk—a-l exp(px’) y]’

and make use of (3.1)<(3.3) and also of (4.2), we are led to the operational
formula

x(xD — k + D] [x*** exp(px") y]

= (—1)" n! exp(pxr) xr—o+k-1 Z by l) A x, v, p) Dy, (4.7)

8§=0

which corresponds to (4.6) when k = 0.
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Setting k = 2, y = 1 and @ = x(xD — 1), the above formula assumes
the form

Or[x—tt exp(pxT)] = (—1)* n! x2—+lexp(px™) A (x, r, p), (4.8)
so that
P [x*—e+1 exp(px") AGUX, 1, p)]
= [(—D™ (m 4 n)l/n!] xBm2n—tlexp(px™) A (x,r,p). (4.9)

mn

However, if we replace n by m, « by « — 2n and put y = 4%(x, r, p), (4.7)
would yield

(_pm[xZ'n—a+1 exp(pxr) A:}a)(x, r, p)]

— (__l)m m1 exp(pxr) x2m+2n—m+1

3 & 1) Als=2-9(x 7, p) DADx, 1, p). (4.10)

$=0

Evidently, from (4.9) and (4.10), we would get

(") ag o p = L S Ao, p)

m+-n Z
sA,(,f‘)(X, r, P)s @11
which leads to
> (" +n (a) m
mgo ( m ) Am+n(xs r,p)t
t a—2n . s l
) * — DsAta)
bl [P3 (xJ”)’}] sz (x+t) 7 DAY T, p),
4.12)

and on a little simplification, we obtain the generating relation (see also (2.8))

S ("5 a6 pyem

m=0 m

= (1 + %)a—% exp [P 3~—x’ + (xﬁrt)"%] AR

or finally in terms of generalized Hermite polynomials, we have

, (4.13)

d r
x 1’ » D

ins
§[§

; (m—-B)(x r, p)
0 .

= (14 L) explpt 7 4 (x¥x + O Gt e + 1), 7, .
4.14)
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V.

The differential and pure recurrence relations follow in a rather straight-
forward manner from (1.5) in the form

{xD + prx" — (« — n + D} AX(x, 1, p) = —(n + D) xA7P(x, r,p),  (5.1)

n4l

and
oA D(x, r, p) — prxt AT (X, r, p) = nxA@(x, r, p), (5.2)

respectively. If, however, we make use of the difference operator
df(0) = fla + 1) — f(o),
the formula (1.5) would yield
A(x, r, p) = xA P (x, r, p) — XA, (x, 1, p). (5.3)

This implies that
A4P(x, 1, p) = (1/x) 42, (x, 1, p),

n—1
and, consequently,

A% 4D (x, r, p) = (1/x*) A (x, 1, p)- (5.4)

Therefore, setting £ = 4 + 1, so that E{f(x)} = f(a+ 1), (1.11) would
lead to
E"AD(x, 1, p) = A3(x, 1, p),

and this in view of (5.4) simplifies to the neat formula

2oy 1
— A (x, r, p) = AL™(x, 1, p). (5.5)
,Z‘O (k) x* k

While concluding, we remark that numerous recurrence relations can be
obtained by combining (5.1)(5.3) and (5.5).
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